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Abstract

Dynamic languages are enjoying increasing popularity recently, due to their power, sim-
plicity and flexibility. However, since many popular dynamic languages are imple-
mented using straightforward interpreters, their performance is not up to par with more
static languages. This situation can be improved with just-in-time compilers, but those
are hard to implement, hard to maintain and hard to change.

Partial evaluation is a technique to make the construction of compilers easier. It can
automatically generate a compiler for a certain language, given an interpreter for the
same language. Despite considerable apparent promise it has so far failed to make a
large impact due to various problems. In addition, it can only be used for ahead-of-time
compilation, which does not work well for dynamic languages.

In this thesis we explore the use of partial evaluation at runtime for interpreters written
in Prolog. For this we wrote a Prolog prototype that performs partial evaluation inter-
leaved with actual program execution. Doing so solves some problems of classical partial
evaluation and makes it at the same time applicable to dynamic languages.
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1 Introduction and Motivation

One of the oldest high-level programming language that is still in use today is Lisp
[McC60]1. Lisp pioneered language features that are typical for what are today called
dynamic programming languages. The great flexibility of these languages, their versatility
and the ease of development has always made them very attractive. Due to various rea-
sons, dynamic languages have become even more popular in the last years. One reason
for that is the increasing power of computers, making up for the relative slowness of dy-
namic language implementations and thus making dynamic languages suitable for many
problem domains. Another reason is the invention of the web, on which dynamic lan-
guages have been used from quite early on, both on the client-side (directly in the browser
with JavaScript, but also more recent developments like Flash, AIR or Silverlight) and on
the server-side with Perl, Python, Ruby etc.

Since the beginning it has been of great concern and a frequent research topic as to how
dynamic languages can be developed that work at the highest possible speeds. This has
turned out not to be easy, as dynamic languages do not really benefit much from the ap-
plication of traditional ahead-of-time compiler techniques. This is due to the fact that the
programs themselves typically do not contain any type information. Thus a compiler can-
not remove the method dispatch overhead or the overhead of garbage-collection, which
are the real speed problems a dynamic language incurs. Therefore research has turned to
runtime techniques such as just-in-time compilation to lower execution overhead. This
endeavour has led to some impressive results, however at the price of enormous com-
plexity. A good JIT compiler is usually a large and intricate piece of code that is hard to
change and to maintain.

Compilers are generally complex pieces of software, whether classical ahead-of-time
compilers or their runtime equivalents. Various techniques exist to ease their implemen-
tation, from ways to describe syntax such as YACC or JavaCC to table-driven, processor
independent assembler generation. However, the fact remains that writing a compiler to
another language is a fairly poor way to encode the semantics of a language. One much
simpler way to do this encoding is to write a simple interpreter for a language. This fact
has been extensively used for dynamic languages; most of the currently popular dynamic
languages are implemented using simple bytecode interpreters.

In the 70’s, starting from this observation, Futamura conjectured [Fut71] that it should
be possible and even easy to turn an interpreter into a compiler in an automated man-
ner using a process that he called partial evaluation. This initiated a lot of research on
the subject, particularly in the functional and logic programming communities. One lan-
guage on which much research has been focused is Prolog, which is a very good language
in which to do partial evaluation. Despite many early successes, partial evaluation has
failed to gain widespread usage in practice for various reasons, the main problem being
that while the techniques work in general, it can be very hard to control them in exactly
the right way. This leads to code explosion (i.e., compilers that generate too much code)
and over- and under-specialization (which lead to too much code and bad performance,
respectively).

1Fortran is even older. Of course both have changed significantly since their inception
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Partial evaluation has been particularly unsuccessful for dynamic languages, for the same
reasons why classical ahead-of-time compilers fail to work for them. The PyPy project
[PyP] explored ways to generate just-in-time compilers automatically from interpreters
by performing partial evaluation at runtime. Moving partial evaluation to runtime turns
out to solve many problems that trouble classical partial evaluation while at the same
time making it more applicable to dynamic languages.

This thesis was directly inspired by the PyPy project. We try to explore partial evaluation
at runtime further by building a Prolog prototype. Due to its simplicity Prolog is partic-
ularly conducive to experiments with partial evaluation. The contributions of this work
are:

• The first implementation of a dynamic partial evaluator for a large subset of Prolog,
including many builtins

• An efficient implementation of promotion in Prolog

• Techniques that allow the prevention of under-specialization without resorting to
heuristics

This thesis is structured as follows: Section 2 gives an overview of dynamic programming
languages and their implementation, describes classical partial evaluation and shows
some of its problems. In Section 3 we describe the basics of dynamic partial evaluation
and introduce our Prolog runtime partial evaluation prototype in detail. Section 4 ex-
plains how lazy choice point handling works. Section 5 describes how we support large
parts of the Prolog language in our partial evaluator. Section 6 describes how the partial
evaluator reuses older generated code. Section 7 describes the partial evaluation algo-
rithm in some detail. In Section 8 we describe benchmarks comparing our system to a
classical partial evaluator, ECCE . In Section 9 we compare our work to other approaches
and in Section 10 we conclude and provide a view of possible future developments.

2 Background

2.1 Dynamic Languages and their Implementation

While not everyone agrees about what constitutes a dynamic language , commonly
agreed on elements include dynamic (but strong) typing, garbage collection and reflec-
tion. Many dynamic languages try to go to extremes and allow the changing of as many
aspects of a program’s behaviour at runtime as possible. Notable examples of dynamic
languages are Smalltalk, Lisp, Python, Ruby, JavaScript.

Another, less typical, dynamic language is Prolog. Prolog is a declarative logic program-
ming language invented by Alain Colmerauer, Philippe Roussel and Robert Kowalski in
1972 [CR93]. The execution of Prolog programs is based on first order predicate calculus.
The Prolog language is formally defined in the ISO Prolog standard [DCED96].

While Prolog differs from the typical dynamic languages popular today (being neither
imperative nor object-oriented), it still shows many of the characteristic traits of a dy-
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Figure 1: Python Example: Summing the Elements of an Iterable

1 def suml is t ( l , i n i t i a l ) :
2 r e s u l t = i n i t i a l
3 f o r element in l :
4 r e s u l t += element
5 re turn r e s u l t

namic language. It is dynamically typed since there is no way to know to which sort of
value a logic variable will be bound at runtime and it has automatic memory manage-
ment. Prolog also contains a number of reflective facilities. Obvious ones include call,
which allows the insertion of dynamically constructed goals into the goal stack. Fur-
thermore there are builtins which allow the inspection of the current database (i.e., the
program being run) like listing and also the changing of it by adding new facts, like
assert and retract.

Most of today’s Prolog implementations use a more or less heavily modified version of
Warren’s abstract machine (WAM) [War83] to interpret Prolog programs. The WAM is
a virtual machine designed for running Prolog programs by compiling them first to the
bytecode instruction set of the WAM and then executing those by running them on an
emulator. Many dynamic languages use similar implementation strategies. Interpreters
(whether they are bytecode-based or interpret some sort of tree) are simple to write, sim-
ple to maintain and simple to enhance. On the other hand they are said not to reach
optimum speeds.

If it actually becomes necessary to get speed higher than what a good interpreter pro-
vides, things become more complicated. Attempts to apply classical compiler-techniques
to dynamic languages have not yielded significant performance improvements. The
problem with this approach is that the source code of dynamic languages does not really
contain enough information to produce efficient machine code. See, for example, the
Python code in Figure 1 Just by looking at the code, the compiler cannot know what the
types of the elements in l are and therefore has no idea how to perform the addition on
them. Since addition in Python works on any number of types due to operator overload-
ing, the compiled code must perform the same costly lookup that the interpreter would
have performed too. Thus the only benefit of a compiler when applied to a dynamic
language is mostly only that it can remove the overhead of bytecode-dispatching, which
gives speedups between 20% and two times faster. See [Sal04] for an overview of ap-
proaches to compiling Python. While this is not a bad result, it is not enough to close
the gap in performance to statically typed compiled languages, which are typically two
orders of magnitude faster that Python.

To get really interesting results, a just-in-time compilation approach is needed. A JIT
compiler has the benefit that it can do runtime profiling to concentrate its efforts on func-
tions or methods that are executed often. This is the general approach of a JIT to get more
information than what the static compiler has available. It observes the running program
and thus gets to know how the program is likely to behave. The information obtained in
this way is not necessarily correct, so the generated code needs to work in other cases too.
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However, those cases are unlikely, so their performance can be slow without downsides2.

For the Python code shown in Figure 1, a (hypothetical) JIT-compiler could for example
observe that the elements of l are typically normal integers. Then it could produce spe-
cial code for this case and general code which works for other cases. The special code
would be very efficient, since the integer addition could be implemented by directly us-
ing the processor.

Writing a JIT-compiler, just like writing a normal ahead-of-time compiler, has many
downsides. It is more complicated to write a program that produces code that does the
things the user program intends than writing an interpreter, which is a program that
directly does the thing the user program intends. The compiler needs to contain the
language semantics of the implemented language and the indirect encoding of these se-
mantics that a compiler has are usually much more verbose than the direct encodings of
these semantics in an interpreter. This makes a compiler harder to write and also harder
to understand. If the language evolves, it is much harder to adapt a compiler than to
adapt an interpreter.

A good example for this lack of maintainability of a compiler is the Psyco project
[Rig, Rig04]. Psyco is a hand-written just-in-time compiler for the Python language. It
was written when Python 2.2 was current and Python 2.1 still widely used. It has not
been changed to keep up with some of Python’s more recent features due to the complex
nature of the changes needed.

2.2 Classical Partial Evaluation

In 1971 Yoshihiko Futamura published a paper [Fut71] that proposed a technique to au-
tomatically transform an interpreter of a programming language into a compiler for the
same language. This would solve the problem of having to write a compiler instead of a
much simpler interpreter. He proposed to use partial evaluation to achieve this goal. He
defined partial evaluation along the following lines:

Given a program P with m + n input variables s1, ..., sm and d1, ..., dm, the partial evalu-
ation of P with respect to concrete values s′

1, ..., s
′
m for the first m variables is a program

P ′. The program P ′ takes only the input variables d1, ..., dn but behaves exactly like P
with the concrete values (but is hopefully more efficient). This transformation is done by
a program S, the partial evaluator, which takes P and s1, ..., sm as input:

S(P, (s′
1, ..., s

′
m)) = P ′

The variables s1, ..., sm are called the static variables, the variables d1, ..., dn are called the
dynamic variables; P ′ is the residual code. Partial evaluation creates a version of P that
works only for a fixed set of inputs for the first m arguments. This effect is called special-
ization (the terms “specialization” and “partial evaluation” will be used interchangeably
in this thesis).

2Many JIT compilers don’t even generate code for the unlikely general case, but put in a check as to
whether the general case is needed and fall back to an interpreter.
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Figure 2: Python Partial Evaluation Example: Exponentiation
Original function:

1 def power ( d , s ) :
2 i f s < 0 :
3 s = −s
4 i n v e r t = True
5 e l s e :
6 i n v e r t = Fa l se
7 r e s u l t = 1
8 while s > 0 :
9 r e s u l t = r e s u l t ∗ d

10 s −= 1
11 i f i n v e r t :
12 re turn 1 / r e s u l t
13 re turn r e s u l t

Residual code for s = 4:

1 def power_4 ( d ) :
2 r e s u l t = 1
3 r e s u l t = r e s u l t ∗ d
4 r e s u l t = r e s u l t ∗ d
5 r e s u l t = r e s u l t ∗ d
6 r e s u l t = r e s u l t ∗ d
7 re turn r e s u l t

When P is an interpreter for a programming language, then the s1, ..., sm are chosen
such that they represent the program that the interpreter is interpreting and the d1, ..., dn

represent the input of this program. Then P ′ can be regarded as a compiled version of
the program that the chosen s′

1, ..., s
′
m represent, since it is a version of the interpreter that

can only interpret this program. Now once the partial evaluator S is implemented, it is
actually enough to implement an interpreter for a new language and use S together with
this interpreter to compile programs in that new language.

A valid implementation for S would be to just put the concrete values into P to get
P ′, which would not actually produce any performance benefits compared with directly
using P . A good implementation for S should instead make use of the information it has
and evaluate all the parts of the program that actually depend only on the s1, ..., sm and
to remove parts of P that cannot be reached given the concrete values.

2.3 Partial Evaluation of Prolog Programs

Partial Evaluation is quite natural in the context of a logic programming language and
very similar to normal evaluation. See [LS91] for an overview. A partial evaluator needs
to deal with known (static) and unknown (dynamic) information in the program, and
Prolog already has this distinction (bound versus unbound logic variables) built into the
language. Normal Prolog programs already deal with some amount of unknown in-
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Figure 3: Partial Evaluation of Prolog Predicates Using the Prolog Interpreter
Original predicates:

1 f (X , Y) :− p (X) , q (X , Y) .
2

3 p ( a ) . p ( b ) .
4

5 q ( a , Y) :− r (Y) .
6 q ( b , Y) :− t (Y) .
7 q ( c , Y) :− s (Y) .
8

9 r ( ra ) . r ( rb ) .
10 t ( ta ) . t ( tb ) .
11 s ( sa ) . s ( sb ) .

Running findall(f_a_Y(a, Y), f(a, Y), L) yields L = [f_a_Y(a, ra),
f_a_Y(a, rb)], therefore the residual code is:

1 f_a_Y ( a , ra ) .
2 f_a_Y ( a , rb ) .

Even not giving any static information at all can produce better code. Running
findall(f_X_Y(X, Y), f(X, Y), L) yields L = [f_X_Y(a, ra), f_X_Y(a,
rb), f_X_Y(b, ta), f_X_Y(b, tb)]

1 f_X_Y ( a , ra ) .
2 f_X_Y ( a , rb ) .
3 f_X_Y ( b , ta ) .
4 f_X_Y ( b , tb ) .

formation. Therefore the normal evaluation process can sometimes be used to directly
perform partial evaluation. See figure 3 for an example. Of course this breaks down as
soon as builtins are used or as soon as the predicate to be evaluated gives infinitely many
solutions for the partially known goal.

One of the most important mechanisms of partial evaluation in Prolog is unfolding. It is
similar to inlining in normal compilers. When a goal in the body of a clause is unfolded,
the goal is replaced by the body of the called function. If the called function has more
than one clause, all the clauses of the called function have to be considered.

Let us look at an example. Given the following Prolog clauses:

f(a, X) :- g(X).
f(a, X) :- h(X, Y), i(Y).
f(b, X) :- j(X).

func(X) :- f(a, X), k(X).

If we unfold f in the body of func, we get:

func(X) :- g(X), k(X).
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func(X) :- h(X, Y), i(Y), k(X).

A partial evaluator in Prolog needs to control the unfolding properly. Usually the dis-
tinction between local and global control is made. Local control decides which goals
should be unfolded. Global control needs to ensure that the goals that are not unfolded
have suitably specialized implementations. See [LB02] for an overview of various control
strategies that are used to achieve this.

2.4 Problems of Classical Partial Evaluation

Classical partial evaluation has a number of problems that have prevented it from be-
ing widely used, despite its considerable apparent promise. One of the hardest prob-
lems of partial evaluation is the balance between under- and over-specialization. Over-
specialization occurs when the partial evaluator generates code that is too specialized.
This usually leads to too much code being generated and can lead to “code explosion”,
where a huge amount of code is generated, without significantly improving the speed of
the code. This happens when the partial evaluator tries to keep all the static information
that it was given, even though not all of it is actually relevant to producing good code.

The opposite effect is that of under-specialization. When it occurs, the residual code is too
general. This happens either if the partial evaluator does not have enough static informa-
tion to make better code, or if the partial evaluator decides that some of the information
it has is actually not useful and it then discards it.

The partial evaluator has to face difficult choices between over- and under-specialization.
To prevent under-specialization it must keep as much information as possible, since once
some information is lost, it cannot regained. However, keeping too much information is
also not desirable, since it can lead to too much residual code being produced, without
producing any real benefit.

See Figure 4 for an example where ECCE (a classical partial evaluator for pure Prolog
[LMDS98]) produces bad code. The code in the figure is a simple Prolog meta-interpreter
which keeps the list of goals that are left to do in a list. In additions there are the
programs for append, naive reverse and a predicate replacing the leaves of a tree by
something else. When ECCE is asked to residualize a call to the meta-interpreter in-
terpreting the replaceleaves predicate, it loses the information that the list of goals
can only consist of replaceleaves terms. Thus eventually the residual code must
be able to deal with arbitrary goals in the list of goals, which leads to the fact that the
full original program is contained in the residual code that ECCE produces (see predi-
cates solve__5, my_clause__6 and append__7 in the residual code). This is a case
of under-specialization (the code could be more specific and thus faster) and also of code
explosion (the full interpreter is contained again, not only the parts that are needed for
replaceleaves). We will come back to this example in Section 8.

A related problem are Prolog builtins. Many Prolog partial evaluators do not handle
Prolog builtins very well. For example ECCE [LMDS98] only supports purely logical
builtins (which are builtins which could in theory be implemented by writing down a
potentially infinite set of facts). Some builtins are just hard to support in principle, e.g., a
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Figure 4: Under-Specialization in ECCE for the Meta-Interpreter

1 % o r i g i n a l c o d e :
2

3 solve ( [ ] ) .
4 solve ( [A|T ] ) :−
5 j i t_merge_point ,
6 my_clause (A, B ) , append ( B , T ,C) , so lve (C) .
7

8 append ( [ ] , T , T ) .
9 append ( [H|T1 ] , T2 , [H|T3 ] ) :−

10 append ( T1 , T2 , T3 ) .
11

12 my_clause ( app ( [ ] , L , L ) , [ ] ) .
13 my_clause ( app ( [H|X] , Y , [H|Z ] ) , [ app (X , Y , Z) ] ) .
14 my_clause ( r e p l a c e l e a v e s ( l e a f , NewLeaf , NewLeaf ) , [ ] ) .
15 my_clause ( r e p l a c e l e a v e s ( node ( Left , Right ) , NewLeaf ,
16 node ( NewLeft , NewRight ) ) ,
17 [ r e p l a c e l e a v e s ( Left , NewLeaf , NewLeft ) ,
18 r e p l a c e l e a v e s ( Right , NewLeaf , NewRight ) ] ) .
19 my_clause ( nrev ( [ ] , [ ] ) , [ ] ) .
20 my_clause ( nrev ( [H|T ] , Z) , [ nrev ( T , T1 ) , app ( T1 , [H] , Z) ] ) .
21

22 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 % r e s i d u a l c o d e f o r s o l v e ( [ r e p l a c e l e a v e s (A, B , C) ] ) by Ecce :
24

25 solve ( [ r e p l a c e l e a v e s (A, B , C) ] ) :− solve__2 (A, B , C) .
26 solve__2 ( l e a f ,A,A) .
27 solve__2 ( node (A, B ) ,C, node (D, E ) ) :− solve__3 (A, C,D, B , E , [ ] ) .
28 solve__3 ( l e a f ,A,A, B , C,D) :− solve__4 ( B ,A, C,D) .
29 solve__3 ( node (A, B ) ,C, node (D, E ) , F ,G,H) :−
30 solve__3 (A, C,D, B , E , [ r e p l a c e l e a v e s ( F , C,G) |H] ) .
31 solve__4 ( l e a f ,A,A, B ) :− solve__5 ( B ) .
32 solve__4 ( node (A, B ) ,C, node (D, E ) , F ) :− solve__3 (A, C,D, B , E , F ) .
33

34 solve__5 ( [ ] ) .
35 solve__5 ( [A|B ] ) :−
36 my_clause__6 (A,C) ,
37 append__7 (C, B ,D) ,
38 solve__5 (D) .
39 my_clause__6 ( app ( [ ] , A,A) , [ ] ) .
40 my_clause__6 ( app ( [A|B ] ,C , [A|D] ) , [ app ( B , C,D) ] ) .
41 my_clause__6 ( r e p l a c e l e a v e s ( l e a f ,A,A) , [ ] ) .
42 my_clause__6 ( r e p l a c e l e a v e s ( node (A, B ) ,C, node (D, E ) ) ,
43 [ r e p l a c e l e a v e s (A, C,D) , r e p l a c e l e a v e s ( B , C, E ) ] ) .
44 my_clause__6 ( nrev ( [ ] , [ ] ) , [ ] ) .
45 my_clause__6 ( nrev ( [A|B ] ,C) , [ nrev ( B ,D) , app (D, [A] ,C) ] ) .
46 append__7 ( [ ] , A,A) .
47 append__7 ( [A|B ] ,C , [A|D] ) :−
48 append__7 ( B , C,D) .
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partial evaluator cannot assume anything about the result of read(X).

The fact that many classical Prolog partial evaluators do not support builtins well makes
applying them to a large existing interpreter a time-consuming task, since often the inter-
preter needs to be rewritten to no longer use unsupported builtins.

When using a partial evaluator on an interpreter for a dynamic languages, essentially the
same problems as with static compilers for such languages occur. The partial evaluator
does not have more information than a static compiler, i.e., it only knows the program
itself. Therefore it cannot produce good residual code for dynamic languages either.

3 Dynamic Partial Evaluation

In this work we try to approach a solution to some of the problems of partial evalua-
tion by performing partial evaluation at runtime. This has been attempted several times
before. Examples are Tempo [CN96, CHN+96] and DyC [GMP+00], both doing partial
evaluation of the C language at runtime. Sullivan [Sul01] differentiates between two
flavours of partial evaluation at runtime: “Runtime partial evaluation [...] defers some of the
partial evaluation process until actual data is available at runtime. However the scope and actions
related to partial evaluation are largely decided at compile time. Dynamic partial evaluation goes
further, deferring all partial evaluation activity to runtime.”

Our work explores specifically dynamic partial evaluation. Dynamic partial evaluation
has many benefits over classical partial evaluation (and also over runtime partial evalu-
ation). The partial evaluator can decide at runtime which parts of the input arguments
should be static and dynamic. Since the partial evaluator is running interleaved with the
program being partially evaluated, the partial evaluator can always obtain more informa-
tion (i.e., make more things static) by observing the running program. This is particularly
helpful, since it allows the partial evaluator to forget information when it is too expen-
sive to keep it, since this information can be re-gained later if this becomes necessary.
This makes the implementation of the partial evaluator (but also the theory behind it)
quite straightforward.

Another advantage is that the partial evaluator can be lazy. It only compiles those code
paths that are really used at runtime, preventing the generation of a lot of code that would
never actually be executed. Thus the effort of the partial evaluator can be concentrated on
the places where they are actually needed. A classical partial evaluator of course cannot
do this and must compile all possible code paths, which is one of the reasons for code
explosion.

Of course doing all the partial evaluation work at runtime slows things down compared
to ahead-of-time partial evaluation. However, due to the increasing power of computers,
doing dynamic partial evaluation is more feasible than twenty or even ten years ago. The
trade-offs between classical partial evaluation, runtime partial evaluation and dynamic
evaluation are evolving.
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3.1 Informal Overview

The general approach of our prototype is to perform partial evaluation at runtime, inter-
leaved with actual execution of the compiled code which makes it possible to feed back
information from the runtime behaviour of the program to the compiler. This feeding
back is done by a primitive operation we call promotion. Promotion is one of the cen-
tral concepts of this work, it is also used to control the interleaving of compilation and
execution.

In this section we first give an informal overview of the partial evaluation process as per-
formed by our prototype. More detailed and formal accounts of the steps of the process
will be given in later sections.

The whole compilation process is started by the user of the partial evaluator by calling
a special predicate named compile_and_call(Term) which behaves exactly like the
builtin call(Term) but first produces residual code for the predicate that is called in this
manner and then executes the newly generated residual code. When starting to produce
code in this way, there is no actual specialization of the builtin happening. The functor of
Term is the only information given to the partial evaluator about what it should produce
code for. In particular, no information about the arguments is passed to the compiler. This
is not a problem, indeed it ensures that the most general possible code is generated – and
due to the runtime-nature of the process, information about the arguments can always be
obtained, if needed. Whenever the compiler needs more information for proceeding, it
observes the runtime-behaviour of the program to gain that information. Only then are
non-general paths created.

If the called user-predicate consists of more than one clause, a preprocessing step trans-
forms these several clauses into one clause, making all choice points explicit (one can
think about this as using the ’;’ builtin to join the separate clauses into one, although
in practice it is more complicated than that, see Sect. 5). This frees the specializer from
having to support several clauses per predicate.

After this pre-processing step, the actual specialization process begins. The specializer
partially evaluates the code from left to right, in the same order that a normal Prolog
interpreter would evaluate the code. During this process the specializer can have vary-
ing degrees of information available about the logic variables that occur. They can be
completely known to the specializer, they can be completely unknown or the specializer
knows that a variable is definitely unbound at a certain point. Also combinations are pos-
sible, e.g., a term with functor f whose first argument is known to be the atom a while
the second argument is unknown and the third argument is known to be a free variable.

A very important concept of this work is how choice points in the program are handled.
When a choice point of any form is hit, two cases are possible:

1. If the specializer has enough information available to decide that at runtime only
one of the choices applies it will continue specialization with this choice.

2. If not enough information is available to make this decision, the specializer stops. It
does not specialize all the paths of the choice point, because that would potentially
generate code for paths that are never actually taken. Instead, it generates a stub
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that will call back to the compiler, once execution actually reaches the stub. Then
only the path that will be executed is compiled.

Choice points are also the way in which execution and compilation are interleaved. After
it has been started, compilation will eventually hit a choice point and thus has to stop.
At this point the code that was generated so far will be executed, until execution hits a
choice point in the residual code and the case to choose has not been compiled.3 Then the
compiler is called again to compile the code for that particular case. After that is done,
the new code is executed, and so on.

There is also a very different view on lazy choice point handling. Which choice is taken
(and thus compiled) at runtime gives the partial evaluator information about the runtime
behaviour of the program. This is particularly the case when the various cases of a choice
point deconstruct the same term in different ways. Under this view on lazy choice points
they become very similar to what is called promotion in the context of PyPy’s dynamic
partial evaluation work [RP07]. Therefore will use this term as well.

When the partial evaluator reaches a call to a builtin there are various possibilities. When
the builtin is side-effect free, and the arguments are sufficiently known, the builtin can
actually be evaluated at compile-time and no residual code will be produced. When the
builtin has side-effects or the arguments are not sufficiently known, a call to that builtin
will be put into the residual code.

The process as described so far would never actually re-use existing code and existing
specialized predicates. However, this is of course desirable, so there is another mech-
anism to do that. At certain points (so called merge points) the specializer tries to stop
generating new code and instead insert a call to an existing specialized predicate. If it
manages to do this, we call it a successful merge. A merge will insert a call to an earlier
predicate and then stop generating more code, which in Prolog is essentially equivalent
to creating a loop, due to tail recursion.

A merge is allowed to happen when two conditions are met. The first (and obvious)
condition is that the merge is sound: The behaviour of the predicate that we insert a
call to must be exactly the same as what would happen if we just continued to specialize.
The second, less obvious but essential condition, is that the merge must be efficient, which
informally means that the loop that will be created through the merge must not contain
any “obviously inefficient” operations. More on this later in Sect. 6.

If a merge is not possible, because none of the predicates generated earlier are suitable,
specialization cannot stop and more code needs to be generated. This new code is in-
serted into a new predicate to make sure that if a similar merge is attempted later in the
specialization process, it will succeed.

The actual partial evaluation is performed by a special interpreter which executes the to-
be-specialized program and produces residual code as a side-effect. The main predicate
of this interpreter looks like this4:

3This can happen when the choice point has never been reached yet or when it has been reached but other
cases have been compiled. These two possibilities are effectively identical.

4The code examples of the partial evaluator are slightly simplified.
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interpret(Continuation, ResidualCode, ResidualCodeHead, History)

The Continuation contains the term that is currently interpreted, the ResidualCode
contains the residual code which was generated so far and History is a high-level de-
scription of the residual code, which is used for merging (see Section 6).

The Continuation term is a ground representation [HG98] for representing the cur-
rently interpreted term. This means that it is represented using terms of the following
forms:

• varbox(RtVar) represents a term about which nothing at all is known. RtVar is
a variable which is used to represent this unknown term in the residual code.

• freebox(RtVar) represents a variable which is known to be free. RtVar is used
as for varbox.

• termbox(Functor, Args, Id) represents a term that is fully known. Functor
is an atom describing the functor of the term, Args is a list of the argument-terms,
again in ground representation and Id is a unique atomic identifier that is used to
figure out which free variables are sharing.

For brevity, we introduce a short notation for terms in ground representation that is close
to the standard Prolog syntax for terms. A varbox is represented by a capital letter
(for example X), a freebox by a capital letter with a line above it (for example X̄),
a termbox is written in standard Prolog term notation using a lower-case letter and
parenthesis, but in addition has an index with the identity, if that is relevant in an example
(for example f1(a2, b3)).

The whole partial evaluation process is started from Prolog using the predicate
compile_and_call(Term) which behaves exactly like the builtin call(Term), ex-
cept that it partially evaluates the to-be called predicate first and then calls the residual
code. This includes a caching mechanism so that only one residual predicate per normal
predicate exists. This means that if compile_and_call(Term) is used twice with the
same predicate, compilation is only performed once.

When using compile_and_call(Term) to call a predicate, the arguments of the pred-
icate are generalized to varbox. This means that the partial evaluator does not know
anything about the predicate’s arguments. If the partial evaluator needs to know any-
thing, this information has to be re-gained using promotion (Sect. 4).

3.2 The Control Strategy

The term control strategy describes in which order the program that is partially evaluated
is looked at. The control strategy for our prototype is very simple. It directly follows
that of a Prolog interpreter, i.e., partially evaluates from left to write, unfolding all calls
to non-builtins. If a call to a builtin is encountered, a single answer is produced, together
with a bit of specialized residual code. If the builtin is non-deterministic, the answer
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still needs to be general enough to cover all cases. If failure is detected by the partial
evaluator, the current branch can be pruned.

A simple example to demonstrate how this works. Assume we have a Prolog database
looking like this:

p(X) :- q(a, X).
q(X, Y) :- X = a, r(Y, b).
r(X, Y) :- X = Y.

And we specialize the call p(X) (e.g., by calling compile_and_call(p(b))). Then
specialization proceeds as follows (the goal that will be handled next is underlined):

Step Current Goal Residual Code
1. p(X) true

2. q(a, X) true

3. a = a, r(X, b) true

4. r(X, b) true

5. X = b true

6. true X = b

The above example was simple in that it did not contain any choice points, i.e., predicates
with more than one clause. How those are handled is described in Section 4.

3.3 Producing Residual Code

This section describes how the residual code is produced and what structure it has. The
residual code is split up into a set of clauses, that call each other. At any time, the spe-
cializer is building the body of one such clause by prepending calls that should go into
the body to ResidualCode argument of the interpret functor and passing on the
larger list. When the predicate that is currently being built up is done, its body is con-
structed by reversing the ResidualCode code list and joining the calls in there with a
conjunction. Then the predicate is asserted using asserta so that the new predicate is
tried before any older code. Then a new predicate is started, by using an empty list for
ResidualCode and putting the head of the new predicate into ResidualCodeHead.

All of the generated clause bodies consist only of calls to builtins (and to some special
predicates), except for the last call of the body, which is usually a tail call to another
residual predicate (if not it is either a call to true or to fail). Therefore the residual
predicates behave like basic blocks since they are pieces of linear code ending in a tail
call (which is essentially a jump).

When a new predicate is started, there is a need to have as many arguments at the head of
this predicate as there are distinct varboxes in the continuation. Since there is nothing
known about a varbox at specialization time, there needs to be an argument to the resid-
ual predicate that will receive the corresponding value at runtime. Contrarily, a termbox
does not need any variable to represent it at runtime, since its functor and arguments are
known anyway. Same for a freebox, which is known to be free and not sharing with
any other variable.
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Figure 5: Turning a Term in Ground Representation into a Prolog Term

1 get_runtime_term ( varbox ( RtVar ) , RtVar , Cont , Cont ) .
2 get_runtime_term ( freebox ( RtVar ) , RtVar , ContIn , ContOut ) :−
3 replace_box ( freebox ( RtVar ) , varbox ( RtVar ) , ContIn , ContOut ) .
4 get_runtime_term ( termbox ( Functor , Args , Id ) , RtTerm , ContIn , ContOut )

:−
5 g et _ ru n t im e _t e rm _ l i s t ( Args , RtArgs , ContIn , ContOut ) ,
6 RtTerm = . . [ Functor | RtArgs ] .
7

8 g et _ ru n t im e _t e rm _ l i s t ( [ ] , [ ] , Cont , Cont ) .
9 g et _ ru n t im e _t e rm _ l i s t ( [ Box|Boxes ] , [ RtTerm|RtTerms ] , ContIn , ContOut )

:−
10 get_runtime_term ( Box , RtTerm , ContIn , Cont ) ,
11 g et _ ru n t im e _t e rm _ l i s t ( Boxes , RtTerms , Cont , ContOut ) .

When the specializer tries to add a new call to the predicate body it is currently building,
it usually knows the arguments in their ground representation only. The body consists
of calls in non-ground representation, i.e., just normal Prolog terms. A termbox can just
directly be turned into a Prolog term. A varbox(RtVar) carries the variable RtVar that
represents it in the residual code inside it.

The complicated case is the freebox. About a freebox the specializer knows that it is
free. However, once it appears in the residual code in a call (to a builtin or to something
else), it is possible that it is bound by this call, so the specializer can no longer assume
its freeness. Therefore requesting a term to represent the freebox at runtime turns it
automatically into a varbox. This is achieved by replacing the freebox by the new
varbox everywhere in the Continuation. Figure 5 shows the predicate that turns
terms in ground representation into normal Prolog terms.

4 Promotion: Lazy Choice Points

4.1 Basic Scheme

One of the fundamental building blocks for the partial evaluator to make use of the dy-
namic setting are lazy choice points. When reaching a choice point in the original pro-
gram, the partial evaluator does not know which choice would be taken at runtime. Com-
piling all cases is undesirable, since that can lead to code explosion. Therefore it inserts
a stub into the residual code and stops the partial evaluation to let the residual code run.
When the stub is reached, the compiler is invoked again and compiles exactly the switch
case that is needed by the running code. After compilation has finished, this new code is
generated. See Figure 6 for a diagram of the interactions involved.

This behaviour can be interpreted differently. Under this interpretation, lazy choice
points are used by the partial evaluator to get information about a so far unknown term.
When the actual runtime value (or some partial info about the value, like the functor and
arity) of an unknown term (i.e., a varbox) is needed by the partial evaluator during com-
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Figure 6: Interaction Between Partial Evaluation and Code Execution
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pilation, promotion can be used to obtain it. If this is happening, compilation needs to
stop, because the value is not actually available yet. Then the residual code generated so
far is executed until the promotion point is reached. When this happens, the value of the
formerly unknown term is available (there are no unknown terms at runtime of course).
At this point the compiler is invoked with the now known term and more code can be
produced.

This is best illustrated by an example. Assume we have the following predicate:

negation(true(X), false(X)).
negation(false(X), true(X)).

For now we rewrite it in the following style, which makes the choice point and first-
argument indexing visible:

negation(X, Y) :- switch_functor(X, [
case(true/1, (X = true(Z), Y = false(Z))),
case(false/1, (X = false(Z), Y = true(Z)))]).

The predicate switch_functor performs a switch on the functor of its first argument,
the possible cases are described by the second argument. It could be implemented as a
Prolog-predicate like this:

switch_functor(X, [case(F/Arity, Body)|_]) :-
functor(X, F, Arity),
call(Body).

switch_functor(X, [_|MoreCases]) :-
switch_functor(X, MoreCases).

If the specializer encounters the call negation(X) it cannot know whether X’s functor
will be true or false. Therefore the specialization process stops, and code looking as
follows is generated:

’$negation1’(X, Y) :-
’$promotion1’(X, Y).

’$promotion1’(X, Y) :-
functor(X, F, N),
continue_compilation(F/N, ’$promotion1’, ...),
’$promotion1’(X, Y).

The predicate ’$negation1’ is the entry-point of the specialized version of negation.
The ’$promotion1’ predicate is the lazy choice point. At this point this predi-
cate has only one clause, which is for invoking the compiler again. More clauses
will be added later. If it is executed, partial evaluation will be resumed by calling
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continue_compilation, passing in the functor and the arity of the argument as in-
formation for compiling more code. Thus, one concrete clause of the choice point will be
generated. After this is done, the promotion predicate is called again, which will execute
the newly generated case.

The continue_compilation gets the functor and arity as its first argument. The sec-
ond argument is the name of the predicate that should get a new clause added. The
further arguments (shown only as ... in the code above) contain the Cases in the
switch_functor call, the continuation of what the partial evaluator still has to evalu-
ate after the choice point. When continue_compilation is called, it will use its first
argument to decide which of the cases it should partially evaluate further.

Let us assume that ’$negation1’ is called with false(X) as an argument.
Then ’$promotion1’ will be executed, calling continue_compilation(false/1,
’$promotion1”, ...). This will generate residual code only for the case where X is
of the form false(_), which looks as follows:

’$promotion1’(false(Z), Y) :-
!, Y = true(Z).

This code will be asserted using asserta, which means that it will be tried be-
fore the callback to compilation shown above. This has the effect that the next time
’$negation1’ is called with false(X) as an argument, this code will be used and
no compilation will be performed. The cut is necessary to prevent the backtracking into
the compilation case.

If the ’$negation1’ predicate is never actually called with an argument of the form
true(X), then the other case of the switch will never be compiled, saving time and
memory. This might not matter for such a trivial case as the one above, but it strongly
reduces compilation time and size of the residual code for more realistic cases. If the
other case will be compiled eventually, the residual code would look like this:

’$promotion1’(true(Z), Y) :-
!, Y = false(Z).

This code will again be inserted into the database using asserta so that it too will be
tried before the compilation case5.

4.2 Refinements

There are some refinements to the scheme described above. An important one is that
the choice point is evaluated directly without lazy stopping, if enough information is
available, i.e., if the argument is already a termbox. A simple (if artifical) example would
be:

5In fact, one optimization that is performed is that the general case is retracted as soon as all the cases of
a switch have been compiled.
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f(X, Y) :- negation(false(X), Y).

If now f(X, Y) is specialized, the switch_functor in negation will be called with
termbox(false, ...) as an argument. Therefore the partial evaluation process can
immediately decide which case of the switch to chose. The residual code will look like
this:

’$f1’(X, Y) :- Y = true(X).

Another important refinement is supporting unbound arguments to the
switch_functor. As described so far, the choice points change the Prolog se-
mantics if the switched-upon variable is unbound at runtime: In this case solutions are
potentially generated in the wrong order, also the compiler-callback case relies on the
first argument being bound. Therefore we must ensure that this never happens, which
can be done by putting a helper predicate into the residual code that generates the
possible bindings in the right order. For the original example the residual code would
thus look like this:

’$negation1’(X, Y) :-
’$case1’(X),
’$promotion1’(X, Y).

’$case1(true(_)).
’$case1(false(_)).
’$promotion1’(X, Y) :-

functor(X, F, N),
continue_compilation(F/N, ’$promotion1’, ...),
’$promotion1’(X, Y).

What changed is the introduction of the ’$case1’ predicate which ensures that the first
argument of ’$promotion1’ is always bound and which generates solutions in the
right order of the argument which was unbound before.

So far one of these case predicates is always inserted, in the future a boundness-analysis
could be done to decide when they are not needed.

4.3 Other uses of lazy switches

The switch_functor primitive has some other uses apart from the obvious ones that
it was designed for, namely for lazy choice points. These other uses also exploit the
laziness of switch_functor, less so the switching part. One of them is to implement a
lazy version of disjunction (the “;” builtin). A disjunction A;B can be implemented by
switching on a new variable like this:

switch_functor(_, [case(a, A), case(b, B)])
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This will have the effect of compiling the two cases of the disjunction lazily, i.e., only
when both are actually needed.

A related use of switch_functor is the “lazy stop”. It can be used to stop compilation
at any point in time and only continue compiling once execution reaches that branch. To
achieve this, instead of continuing to compile using some continuation Cont we use the
following as a continuation:

switch_functor(_, [case(a, Cont)])

Inserting such a lazy stop can be done at arbitrary points in the partial evaluation process
without making the residual code significantly worse. Of course each lazy stop has a
small performance cost, but the basic structure of the residual code will not change.

5 Full Prolog Support

5.1 Preprocessing Step

Since the partial evaluator itself cannot deal with choice points at all apart from in the
form of switch_functors, there needs to be a pre-processing step that turns normal
Prolog code with potentially more than one clause per predicate into a form where all
these clauses are joined by suitable calls to switch_functor.

A correct implementation would be to just use the disjunctions as described in Section
4.3. However, this would not expose functor-switches that are implicit in the various
clause to the partial evaluator. What happens instead is that the pre-processor tries to
find an argument that is deconstructed by several clauses. Then a switch_functor can
be used for that argument. Let us look at an example, the typical append predicate:

append([], T, T).
append([H | L1], L2, [H | L3]) :- append(L1, L2, L3).

The predicate deconstructs its first argument (and also its third). Therefore, it should be
turned into code looking like this:

append(A, B, C) :-
switch_functor(A, [

case([]/0, B = C),
case(./2, A = [H | L1], C = [H | L3], append(L1, B, L3))]).

Another example would be the following polymorphic addition:

add(int(X), int(Y), int(Z)) :- Z is X + Y.
add(str(X), str(Y), str(Z)) :- atom_concat(X, Y, Z).
add(list(X), list(Y), list(Z)) :- append(X, Y, Z).
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Which is turned into this:

add(A, B, C) :-
switch_functor(A, [

case(int/1, (A = int(X), B = int(Y), C = int(Z), Z is X + Y)),
case(str/1, (A = str(X), B = str(Y), C = str(Z), atom_concat(X, Y, Z))),
case(list/1, (A = list(X), B = list(Y), C = list(Z), append(X, Y,Z)))]).

The preprocessing step is dependent on the context where the call happened. If this add
predicate would be called in the following context:

is_suffix(A, B) :- add(_, A, B).

Then the preprocessor would produce the following for add:

add(A, B, C) :-
switch_functor(B, [

case(int/1, (A = int(X), B = int(Y), C = int(Z), Z is X + Y)),
case(str/1, (A = str(X), B = str(Y), C = str(Z), atom_concat(X, Y, Z))),
case(list/1, (A = list(X), B = list(Y), C = list(Z), append(X, Y,Z)))]).

because the first argument of add is known to be free, switching on it would not make as
much sense.

The current implementation of the preprocessing step is rather simple and therefore
won’t be described in all detail here. It should be made more advanced in the future (po-
tentially by the same techniques that are used for unification factoring, a related topic,
see [DRSS96]).

5.2 Builtins

In this section we describe the handling of builtins by the partial evaluation system.
When the partial evaluator encounters the call to a builtin it needs to produce a residual
version of the call, taking the available information about the arguments of the builtin
into account. In addition it must sometimes change its knowledge about the arguments
of the builtins, particularly about freeboxes, which can in the general case no longer
assumed to be free after a call to a builtin.

There is a general strategy for doing this, that is correct for almost all builtins. The
idea is to just put the call to the builtin into the residual code unchanged and change
all freeboxes in the arguments into varboxes. This means that the partial evaluator
essentially ignores builtins and just puts them into the residual code. In addition it as-
sumes that the builtin can bind any of its known-to-be-free arguments (the termboxes
cannot be changed anyway and the varboxes are already assumed to contain anything,
therefore both do not need to change). This is achieved by using get_runtime_term
(see Figure 5) on all the arguments of the builtin call.
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For builtins that have side-effects (like I/O builtins) this is essentially the only strategy
that is correct. Even if the partial evaluator fully knows the argument to a predicate like
print, it still needs to put it into the residual code and not just execute it once at compile
time.

For builtins that do not have side-effects this does not apply. If enough information is
available, the partial evaluator can fully evaluate the builtin at compile time and thus
produce no residual code at all. An example of this would be the builtin call X is 1 +
26. If the partial evaluator knows that X is free at this point, it can just bind X to 3 and not
produce any residual code. This binding is done by replacing the freebox representing
X by a termbox(3, [], ...) in the continuation.

Sometimes emitting no residual code for a builtin at all is not possible, but just emitting
the full builtin is also not necessary. In this case the partial evaluator can produce any
other bit of residual code that preserves semantics. A simple example is again X is 1 +
2where X is a varbox (and thus possibly but not necessarily free). This means the partial
evaluator cannot just bind X to 3 at compile-time, since at runtime X might be something
that does not unify with 3. Instead it must emit X = 3 into the residual code, which
should still be more efficient than actually having to perform the arithmetic operation.

In fact, the most typical occurrence of this sort of behaviour occurs when the unification
builtin = is itself found in the source program. Let us assume the following unification
needs to be specialized: f(Ā, b) = f(c, B). Then the residual code would be B = b.
Note that the binding of Ā needs no residual code, since the specializer knows it is free
and can thus directly bind it by replacing all its occurrences with c. This reasoning does
not apply to B, which might already be bound at runtime at this point. This sort of
residualization of a builtin can be seen to be a form of “strength-reduction”. The partial
evaluator performs as many parts of the builtin as it can at compile-time, what it cannot
perform must be done by the residual code that is emitted.

The strategies described above do not work at all for the cut and if-then-else (A -> B
; C). The problem with those is that they are position-dependant, which means that
they depend on where in a predicate they occur and on how many clauses a predicate
has. This is a problem for the partial evaluator. It cannot just produce cuts in the resid-
ual code, since the clauses in the residual code do not at all correspond to clauses in
the original code. Therefore the cuts and if-then-else calls are transformed away into
a form where they are implemented using exceptions. The transformation that is used
is essentially that described in [Pre92]. The benefit of using exceptions is that they are
position-independent. See Figure 7 for an example.

The ’;’ builtin (used for disjunction) is handled by replacing it with a
switch_functor, as described in section 4.3.

Builtins that are particularly interesting in the context of dynamic partial evaluation are
meta-call builtins like call or findall. Most classical partial evaluators cannot handle
such builtins when they do not manage to infer what the functor of the called predicate is.
If the functor cannot statically be inferred the partial evaluator needs to give up often by
putting the original meta-call into the residual code. This prevents any partial evaluation

6Note that the programmer did not necessarily write this slightly nonsensical bit of code. The actual code
could for example be X is 1 + A but the partial evaluator found out that A is always 2 here.
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Figure 7: Transforming the Cut into Exceptions
Original code:

1 f ( 0 , [ ] ) :− ! .
2 f (X , [ _ | T ] ) :− X0 i s X − 1 , f ( X0 , T ) .

Transformed code that is no longer using the cut:

1 f (X , Y) :− catch ( f_new (X , Y , CutPoint ) ,
2 cuthere ( CutPoint2 ) ,
3 rethrow_cuthere ( CutPoint , CutPoint2 ) ) .
4 f_new ( 0 , [ ] , CutPoint ) :− cuthere ( CutPoint ) .
5 f_new (X , [ _ | T ] , _ ) :− X0 i s X − 1 , f ( X0 , T ) .
6

7 cuthere ( CutPoint ) .
8 cuthere ( CutPoint ) :− throw ( cuthere ( CutPoint ) ) .
9 rethrow_cuthere ( CutPoint , CutPoint2 ) :−

10 CutPoint \== CutPoint2 , throw ( cuthere ( CutPoint2 ) ) .

from happening. Our prototype can easily handle such builtins. If the call happens on
a termbox, the partial evaluator knows which predicate to call and can just proceed.
Otherwise, it can use the same mechanism that switch_functor uses to observe the
actual program and thus get to know the functor of the called term.

An extreme example for a case where a classical partial evaluator does not work very well
is a read-eval-print-loop (repl) where each goal that the user wants to evaluate should be
partially evaluated. Figure 8 shows an extremely simplified repl together with an exam-
ple session and the residual code that our partial evaluator produced after the example
session. A classical partial evaluator can obviously have no knowledge in advance about
what goals the user will type in, so would not perform any interesting partial evaluation.

6 Merging

The specialization algorithm described so far produces code that has a tree as its call-
graph. See Figure 9 for an example of how a call graph could look like. This means that
all loops in the specialized program will be fully unfolded, leading to arbitrarily much
generated code. If the program contains some sort of loop, it will be fully unfolded as
well. Clearly this is not desirable so a mechanism is needed to reuse already compiled
code. This mechanism is called merging. Merging is triggered by a special predicate
called jit_merge_point that the user of the specializer needs to put at certain points
into his program. The fact that the user needs to trigger merging herself is clearly not
optimal and we plan to examine ways of finding good places where to do merging auto-
matically in the future. However, it is also not too burdensome, typically the number of
jit_merge_points that need to be put into an interpreter is small (mostly the number
is even one).

If a call to this predicate is encountered during compilation, the specializer stops the
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Figure 8: A Simple Repl for Prolog
Repl code and some example predicates:

1 r e p l :−
2 j i t_merge_point ,
3 read (X) ,
4 c a l l (X) ,
5 print (X) ,
6 nl , r e p l .
7

8 % example p r e d i c a t e s
9 f ( a ) . f ( b ) . f ( c ) .

10 g (X) :− h (Y , X) , f (Y) .
11 h ( c , d ) .

Example session:

1 ?− r e p l .
2 |: f ( c ) .
3 f ( c )
4 |: g (X) .
5 g ( d )
6 |: f a i l .
7

8 No

Produced residual code (promotion compilation cases not shown):

1 ’ $entrypoint1 ’ :−
2 read (A) ,
3 ’ $cal lpromotion1 ’ (A) .
4

5 ’ $cal lpromotion1 ’ ( f (A) ) :− ! ,
6 ’ $case1 ’ (A) , ’ $promotion1 ’ (A) .
7 ’ $cal lpromotion1 ’ ( g (A) ) :− ! ,
8 A=d ,
9 print ( g ( d ) ) ,

10 nl ,
11 ’ $entrypoint1 ’ .
12 ’ $cal lpromotion1 ’ ( f a i l ) :− ! ,
13 f a i l .
14

15 ’ $case1 ’ ( a ) . ’ $case1 ’ ( b ) . ’ $case1 ’ ( c ) .
16 ’ $promotion1 ’ ( c ) :− ! ,
17 print ( f ( c ) ) ,
18 nl ,
19 ’ $entrypoint1 ’ .
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Figure 9: Example Call Graph Without Merging

specialization process. It then compares its current state against the states it had at earlier
merge points. If none of the earlier states are similar enough to the current one or if this is
the first merge point that is encountered, a snapshot of the current state of the specializer
is taken and stored in the Prolog database for the benefit of future merging attempts.
Then a new predicate is started and associated with that snapshot.

If the snapshotted state of an earlier merge point matches the current state, then we know
that the old residual code can be reused. Therefore the specializer inserts a call to the
predicate that is associated with that old state. Afterwards, specialization can stop, and
the residual code that is currently being built can be asserted. Since the inserted call is
the last thing that went into the residual code, it is a tail call.

The “state” we have talked about so far is the Continuation argument of the
interpret main predicate. This argument contains all the calls that are still left
to specialize and therefore contains enough information to decide whether an older
Continuation was similar enough to reuse the code that was generated for it.

Whether two states match or not is a complicated question, and will be the subject of the
following subsections. The exact algorithm that is used will be described in a piecemeal
fashion, first giving the simplest condition that is needed for a successful merge and then
refining it step by step.
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6.1 Sound Merges

First some terminology: When a merge is attempted, the current state (which is a Prolog
term in ground representation) is compared against a target state (also a Prolog term).
Every target state has a predicate attached called the target predicate, which contains the
residual code the specializer produced when specializing the target state, called the tar-
get code. The residual code that the specializer would produce if it continued specializing
with the current state is called the potential current code. When the two states are consid-
ered similar enough the merge is called successful.

A necessary and thus the most important condition that a merge must fulfill to be suc-
cessful is the condition of soundness. A merge is called sound, if behaviour is conserved,
i.e., if the residual code attached to the target state behaves the same way as the code the
specializer would generate for the current state. The code does not need to be exactly
identical, it is enough if the behaviour is the same.

For this condition to be fulfilled, the target state needs to be equal to or more general than
the current state. In other words, the current state, as a Prolog term, must be an instance
of the target state. This mean that all parts of the target state that are termboxes should
be termboxes in the current state as well and also have the same functor and the same
number of arguments. The varboxes in the target state can however be replaced by
either freeboxes or termboxes in the current state.

The reasoning behind this is that if the target state is strictly more general than the current
state, the target code is also more general than the potential current code would be. The
target code was generated under the assumption that the varboxes can be anything, so
it is legitimate to pass anything there when doing a merge.

The places where the current state is more instantiated than the target state are where a
successful merge loses information. If the target code was generated without any knowl-
edge about a certain term (i.e., a varbox) and the current state contains more informa-
tion about this term (i.e., it is a freebox or a termbox) then this information is not
used, when the merge succeeds. Merges that do not lose information can always suc-
ceed. Those that are sound but lose information need careful treatment, see next section.

Let us look at a simple example: We specialize the standard append predicate. This
does not actually lead to any speed-improvement, but shows the fundamental behaviour
of merges. The predicate and the residual code can be seen in Figure 10. When the
specializer hits the merge point for the first time, it needs to create a new predicate. When
the merge point it hit the second time, the state of the partial evaluator is the same as
when the merge point was hit the second time, thus the merge is successful (and does
not lose any information).

6.2 Efficient Merges

When a merge loses information, disastrous effects can ensue. It is possible, that the
information that is lost by the merge was actually needed and the target code contains a
promotion to gain this information. If this is the case, the residual code contains a clear
inefficiency, since promotions are not cheap (they to perform a match on the functor of
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Figure 10: Merging Example: A Sound Merge

1 % o r i g i n a l c o d e :
2

3 append ( [ ] , X , X) .
4 append ( [H | T1 ] , T2 , [H | T3 ] ) :−
5 j i t_merge_point , append ( T1 , T2 , T3 ) .
6

7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % r e s i d u a l c o d e f o r append ( [ a , b , c ] , [ d ] , X) :
9

10

11 ’ $entrypoint1 ’ (A, B , C) :−
12 ’ $case1 ’ (A) , ’ $promotion1 ’ (A, C, B ) .
13

14 ’ $case1 ’ ( [ ] ) . ’ $case1 ’ ( [ _|_ ] ) .
15

16 ’ $promotion1 ’ ( [D|E ] , C, B ) :− ! ,
17 C=[D|F ] ,
18 ’ $mergepoint1 ’ ( F , B , E ) .
19

20 ’ $mergepoint1 ’ ( F , B , E ) :−
21 ’ $case1 ’ ( E ) , ’ $promotion2 ’ ( E , F , B ) .
22

23 ’ $promotion2 ’ ( [G|H] , F , B ) :− ! ,
24 F=[G| I ] ,
25 ’ $mergepoint1 ’ ( I , B , H) .
26 ’ $promotion2 ’ ( [ ] , F , B ) :− ! ,
27 B=F .

The specializers state at line 18 was append(F,B,E). At line 25 it was the append(I, B, H).
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a term). This situation is especially bad in the case where the successful merge closes a
loop in the residual code. For every iteration a useless promotion is executed.

This leads to the definition of an inefficient merge: An inefficient merge is one that closes a
loop in such a way that the merge loses information that the loop body reacquires with a
promotion.

Let us look at an example. In figure 11 there is a simple predicate, which takes a list and
adds the atom a either once or twice in front of each element of the list. The predicate
checks its Howmany argument again for every list element, even though Howmany does
not change throughout the loop over the list. Ideally, we would like the specializer to
recognize this, and specialize the predicate in such a way that the check only occurs once
and is followed by a loop specialized for only one of these cases.

What happens when just soundness is used for merging can be seen in the residual code
in figure 11. The merge in predicate $promotion3 is successful, even though the infor-
mation that Howmany = 1 is lost in the merge. The code following ’$mergepoint1’
promotes Howmany, so the merge was inefficient. As it is, the residual code is essentially
equivalent to the original predicate which is not the desired outcome.

At the time where the merge is attempted, enough information is available to see that
having this merge succeed will lead to an inefficient loop. The merge loses information
in the third argument to $mergepoint1, and that third argument of the predicate is
soon promoted.

Since it is not really practical to inspect the generated and asserted residual code, the
specializer keeps a condensed version of the residual code that it has generated so far
that can be used to decide whether a merge is efficient or not. This is called the History
(see Figure 12). The history records all merges that failed, all promotions (whether the
promoted term was known already or not) and unifications of two variables. The history
is a linear list of such events, with the event that happened most recently at the beginning
of the list.

When a merge is attempted this information can then be used to decide as to whether
the merge is efficient or not. However, this is only possible when the target merge point
is actually within the history. This is not always the case, for example the target merge
point could lie in another branch of an older promotion. To still allow the detection of
inefficient merges, we restrict the merge points that are tried as targets to those merge
points that are in the current history.

A successful merge with a target merge point in the current history has the interesting
property that it always produces a loop in the call graph (which corresponds to a normal
loop due to tail call optimization). Since loops are the parts of a program where most exe-
cution time is spent it is beneficial trying to concentrate on loops when deciding whether
a particular bit of code is efficient or not.

For the inefficient example above the history would look as in Figure 12. Looking at the
history of promotion3 it can be seen that first and the third argument of mergepoint1
will be promoted after the merge point. Therefore the merge that succeeded in Figure 11
should not succeed. What should happen instead can be seen in Figure 13: A specialized
version of the loop is generated that works only for Howmany = 1.
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Figure 11: Merging Example: An Inefficient Merge

1 % o r i g i n a l c o d e :
2

3 add_one_or_two_as ( [ ] , _ , [ ] ) .
4 add_one_or_two_as ( [H | T ] , Howmany, [H | R ] ) :−
5 j i t_merge_point , add_as (Howmany, R , T2 ) ,
6 add_one_or_two_as ( T , Howmany, T2 ) .
7

8 add_as ( 1 , [ a | T ] , T ) .
9 add_as ( 2 , [ a , a | T ] , T ) .

10

11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % r e s i d u a l c o d e f o r add_one_or_ two_as ( [ a , b , c , d ] , 1 , X) :
13

14 ’ $entrypoint1 ’ (A, B , C) :−
15 ’ $case1 ’ (A) , ’ $promotion1 ’ (A, C, B ) .
16

17 ’ $case1 ’ ( [ ] ) . ’ $case1 ’ ( [ _|_ ] ) .
18

19 ’ $promotion1 ’ ( [D|E ] , C, B ) :− ! ,
20 C=[D|F ] ,
21 ’ $mergepoint1 ’ ( E , F , B ) .
22

23 ’ $case2 ’ ( 1 ) . ’ $case2 ’ ( 2 ) .
24

25 ’ $mergepoint1 ’ ( E , F , B ) :−
26 ’ $case2 ’ ( B ) , ’ $promotion2 ’ ( B , E , F ) .
27

28 ’ $promotion2 ’ ( 1 , E , F ) :− ! ,
29 F=[ a|G] ,
30 ’ $case1 ’ ( E ) , ’ $promotion3 ’ ( E , G) .
31

32 ’ $promotion3 ’ ( [H| I ] , G) :− ! ,
33 G=[H| J ] ,
34 ’ $mergepoint1 ’ ( I , J , 1 ) .
35 ’ $promotion3 ’ ( [ ] , G) :− ! ,
36 G= [ ] .

The specializers state at line 21 is add_as(B, F, X̄), add_one_or_two_as(E,B, X̄). At line
34 it is add_as(1, J, X̄), add_one_or_two_as(I, 1, X̄)
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Figure 12: History Example
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Figure 13: Merging Example: Preventing the Inefficient Merge

1 % o r i g i n a l c o d e :
2

3 add_one_or_two_as ( [ ] , _ , [ ] ) .
4 add_one_or_two_as ( [H | T ] , Howmany, [H | R ] ) :−
5 j i t_merge_point , add_as (Howmany, R , T2 ) ,
6 add_one_or_two_as ( T , Howmany, T2 ) .
7

8 add_as ( 1 , [ a | T ] , T ) .
9 add_as ( 2 , [ a , a | T ] , T ) .

10

11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % r e s i d u a l c o d e f o r add_one_or_ two_as ( [ a , b , c , d ] , 1 , X) :
13

14 ’ $entrypoint1 ’ (A, B , C) :−
15 ’ $case1 ’ (A) , ’ $promotion1 ’ (A, C, B ) .
16

17 ’ $case1 ’ ( [ ] ) . ’ $case1 ’ ( [ _|_ ] ) .
18

19 ’ $promotion1 ’ ( [D|E ] , C, B ) :− ! ,
20 C=[D|F ] ,
21 ’ $mergepoint1 ’ ( E , F , B ) .
22

23 ’ $case2 ’ ( 1 ) . ’ $case2 ’ ( 2 ) .
24

25 ’ $mergepoint1 ’ ( E , F , B ) :−
26 ’ $case2 ’ ( B ) , ’ $promotion2 ’ ( B , E , F ) .
27

28 ’ $promotion2 ’ ( 1 , E , F ) :− ! ,
29 F=[ a|G] ,
30 ’ $case1 ’ ( E ) , ’ $promotion3 ’ ( E , G) .
31

32 ’ $promotion3 ’ ( [H| I ] , G) :− ! ,
33 G=[H| J ] ,
34 ’ $mergepoint2 ’ ( I , J ) .
35

36 ’ $mergepoint2 ’ ( I , [ a|K] ) :−
37 ’ $case1 ’ ( I ) , ’ $promotion4 ’ ( I , K) .
38

39 ’ $promotion4 ’ ( [ L|M] , K) :− ! ,
40 K=[L|N] ,
41 ’ $mergepoint2 ’ (M, N) .
42 ’ $promotion4 ’ ( [ ] , K) :− ! ,
43 K= [ ] .

The specializers state at line 21 is add_as(B, F, X̄), add_one_or_two_as(E,B, X̄).
At line 34 it is add_as(1, J, X̄), add_one_or_two_as(I, 1, X̄). At line 41 it is
add_as(1, N, X̄), add_one_or_two_as(M, 1, X̄)
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6.3 Generalizing the Continuation

The merging algorithm described so far – trying to find sound efficient merges – has cases
where a merge never happens. This occurs when the continuation grows from merge
attempt to merge attempt, but the most recent continuation is never an instance of any of
the older ones.

An example of this is when the specialized program builds up a result. In Figure 14 we
specialize a predicate that reverses a list using an accumulator. The partial evaluator
knows the accumulator, which grows and grows. Therefore a merge is never possible.
That is bad, since knowing the accumulator is not actually helpful for the partial evalua-
tion.

To prevent this effect, we need to introduce a new step in the merging algorithm. When
all merge attempts have failed, the current continuation is widened. To do this, we look
at the merge points in the history, starting from the most recent ones. We are looking for
an older state that is different from the current state. The interesting differences are those
where a termbox in the current state differs from a termbox in the older state (either
because the functor or because the arity is different). We would like to continue with a
new state where the places where the states differ are replaced by a varbox.

This is achieved by an operation called the most specific generalization [LMM88] of two
Prolog terms (also called least general generalization or anti-unification. Given two Prolog
terms A and B a generalization of these terms is a term C so that A and B are instances
of C. The most specific generalization is a generalization M of A and B so that for all
generalizations C of A and B, M is an instance of C.

When we found an older state that has differences to the current state, we widen the
current state so that the new state is the most specific generalization of the current state
and the older state (we do not just pick any random older state but only let widening be
performed under a condition that will be described further down). This will replace the
termboxes that differ between the two states by varboxes. Then we continue partial
evaluation with the new state as the continuation.

The reasoning behind this is that we generalize away those and only those parts of the
state that prevented the merge to succeed this time. Therefore it is likely that the merge
will succeed when the next merge point is hit.

In Figure 15 we see how widening solves the problem of Figure 14. Since the continu-
ation is growing, the merge from ’$promotion2’ to ’$mergepoint2’ is prevented.
Instead, the continuation revacc(F, [E,C], B) is widened, by computing the most spe-
cific generalization between it and the older state revacc(D, [C], B). The result is the new
continuation revacc(F, [E|G], B). The next time a merge is attempted, it succeeds.

There is one small addition to the widening scheme described so far. When computing
the most specific generalization it is possible that a termbox that was used to decide
which case of a lazy switch should be used is replaced by a varbox. Thus we would lose
information that was actually used successfully by the partial evaluator when producing
the residual code of the older state. To prevent this from happening we can again use the
information in the history to prevent such a widening.
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Figure 14: Merging Example: Merge Never Occurs

1 revacc ( [ ] , R , R) .
2 revacc ( [H | T1 ] , T2 , R) :−
3 j i t_merge_point , revacc ( T1 , [H | T2 ] , R) .
4

5 rev ( E , R) :−
6 revacc ( E , [ ] , R) .
7

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % r e s i d u a l c o d e f o r r e v ( [ a , b , c , d ] , X) :

10

11 ’ $entrypoint1 ’ (A, B ) :−
12 ’ $case1 ’ (A) , ’ $promotion1 ’ (A, B ) .
13

14 ’ $case1 ’ ( [ ] ) . ’ $case1 ’ ( [ _|_ ] ) .
15

16 ’ $promotion1 ’ ( [C|D] , B ) :− ! ,
17 ’ $mergepoint1 ’ ( B , C, D) .
18

19 ’ $mergepoint1 ’ ( B , C, D) :−
20 ’ $case1 ’ (D) , ’ $promotion2 ’ (D, B , C) .
21

22 ’ $promotion2 ’ ( [ E|F ] , B , C) :− ! ,
23 ’ $mergepoint2 ’ ( B , C, E , F ) .
24

25 ’ $mergepoint2 ’ ( B , C, E , F ) :−
26 ’ $case1 ’ ( F ) , ’ $promotion3 ’ ( F , B , C, E ) .
27

28 ’ $promotion3 ’ ( [G|H] , B , C, E ) :− ! ,
29 ’ $mergepoint3 ’ ( B , C, E , G, H) .
30

31 ’ $mergepoint3 ’ ( B , C, E , G, H) :−
32 ’ $case1 ’ (H) , ’ $promotion4 ’ (H, B , C, E , G) .
33

34 ’ $promotion4 ’ ( [ I | J ] , B , C, E , G) :− ! ,
35 ’ $mergepoint4 ’ ( B , C, E , G, I , J ) .
36

37 ’ $mergepoint4 ’ ( B , C, E , G, I , J ) :−
38 . . .
39 . . .

The specializers state at line 17 is revacc(D, [C], B). At line 23 it is revacc(F, [E,C], B).
At line 29 it is revacc(H, [G, E, C], B). At line 35 it is revacc(J, [I, G, E, C], B), and so on.
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Figure 15: Merging Example: Widening the Continuation

1 revacc ( [ ] , R , R) .
2 revacc ( [H | T1 ] , T2 , R) :−
3 j i t_merge_point , revacc ( T1 , [H | T2 ] , R) .
4

5 rev ( E , R) :−
6 revacc ( E , [ ] , R) .
7

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % r e s i d u a l c o d e f o r r e v ( [ a , b , c , d ] , X) :

10

11 revacc ( [ ] , R , R) .
12 revacc ( [H | T1 ] , T2 , R) :−
13 j i t_merge_point , revacc ( T1 , [H | T2 ] , R) .
14 ’ $entrypoint1 ’ (A, B ) :−
15 ’ $case1 ’ (A) , ’ $promotion1 ’ (A, B ) .
16

17 ’ $case1 ’ ( [ ] ) . ’ $case1 ’ ( [ _|_ ] ) .
18 ’ $promotion1 ’ ( [C|D] , B ) :− ! ,
19 ’ $mergepoint1 ’ ( B , C, D) .
20

21 ’ $mergepoint1 ’ ( B , C, D) :−
22 ’ $case1 ’ (D) , ’ $promotion2 ’ (D, B , C) .
23

24 ’ $promotion2 ’ ( [ E|F ] , B , C) :− ! ,
25 ’ $mergepoint2 ’ ( B , [C] , E , F ) .
26

27 ’ $mergepoint2 ’ ( B , G, E , F ) :−
28 ’ $case1 ’ ( F ) , ’ $promotion3 ’ ( F , B , G, E ) .
29

30 ’ $promotion3 ’ ( [H| I ] , B , G, E ) :− ! ,
31 ’ $mergepoint2 ’ ( B , [ E|G] , H, I ) .
32 ’ $promotion3 ’ ( [ ] , B , G, E ) :− ! ,
33 B=[E|G] .

revacc(D, [C], B), revacc(F, [E,C], B), revacc(F, [E|G], B), revacc(I, [H,E|G], B),
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6.4 The Full Merging Algorithm

In this section we give a summary of the full merging process. The merging process has
two inputs, one is the current state, which is the continuation of the partial evaluator when
it hit the jit_merge_point, the other is the history. For the purpose of this section, the
history is simply a list of target merge points together with their target state. The list
is in the order in which the merge points were produced, the most recent merge points
being at the front of the list. The target states in the history are the continuations that the
partial evaluator had when the older merge points where produced. The target states in
the history have some additional information: some of the termboxes and varboxes
in them are marked. A mark on a box means that the corresponding box was promoted
on the path between the target state and the current state.

Merging proceeds in four steps:

1. Searching for an information-loosing efficient match. For every target state in the
history we do the following:

• If the target state is not more general than the current state:

– The potential match is not sound. Continue with the next target state in the
history.

• Else:

– Compute the most general unifier of the target state and the current state. This
is a list of bindings of the varboxes from the target state to termboxes or
varboxes.

– If these bindings map any marked varbox from the target state to a termbox:

∗ The potential match is not efficient. Continue with the next target state in
the history

– Else:

∗ The match is sound and efficient. Insert a call to the corresponding predi-
cate and stop the partial evaluation process.

2. Searching for an exact match. For all target states (not only those in the history) we
do the following:

• Check whether the target state is structurally equal to the current state. This is done
using the Prolog-builtin =@=. If this is the case:

– We have found a non-information-losing match. Insert a call to the corre-
sponding predicate and stop the partial evaluation process.

• Else:

– Continue with the next target state.
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Using structural equality ensures that no varbox in the target state is bound to any
termbox, thus ensuring that no information is lost.

3. Trying to widen the current continuations. At this point no existing target state that
would match has been found. We try to widen the current continuation before going on.
For this we do the following for every target state in the history:

• Compute a potential new state, which is the most specific generalization of the target
state and the current state.

• Compute the most general unifier of the new state and the target state. This is a list
of bindings of the varboxes from the new state to termboxes or varboxes from
the target state.

• Check if any varbox is bound to a marked termbox from the target state. If that
is the case:

– The widening would lose information that is likely to be needed again. There-
fore, we continue trying to widen with the next state in the history.

• Else:

– Use the new state as the continuation and continue the partial evaluation pro-
cess.

4. Default behaviour. Neither did any of the potential merges succeed, nor did we
manage to widen the continuation. Thus we just continue the partial evaluation process
with the current state as the continuation.

7 Partial Evaluation Algorithm

This section gives a succinct summary of the various elements of the partial evaluation
algorithm.

Partial evaluation is started by the user calling compile_and_call(Goal). Then:

• If the user did not yet call compile_and_call with a goal that had the same
functor and arity than the current goal, a new residual predicate is started and as-
sociated with the current functor and arity. All the arguments of Goal are replaced
by varboxes. Then partial evaluation starts with that goal as the continuation.
When partial evaluation stops, the new residual predicate is called.

• If the user already called compile_and_call with a goal that had the same func-
tor and arity than the current goal, call the residual code associated with that func-
tor and arity.

In the first case, partial evaluation is performed, until the process is stopped or until
the continuation is empty. The continuation consists of goals, joined together with a
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conjunction. Partial evaluation always treats the leftmost goal of the continuation next.
When doing this, one of the following cases applies:

1. The leftmost goal of the continuation is a switch_functor that is sufficiently in-
stantiated. Then the corresponding case will be chosen and partial evaluation will
continue there.

2. The leftmost goal of the continuation is a switch_functor that is not sufficiently
initiated. Then a lazy switch will be inserted into the residual code with a general
case that calls back into the compiler. Then the partial evaluation process will stop.

3. The leftmost goal of the continuation is a builtin and we can statically detect that
it fails. Then the branch which is currently being specialized is pruned and partial
evaluation stops.

4. The leftmost goal of the continuation is a builtin which cannot be statically detected
to fail. Then it is residualized, which yields a single computed answer general
enough for all cases, and a specialized version of that builtin.

5. The leftmost goal of the continuation is a call to a user-predicate. Then the pre-
processing step is applied to the various clauses of the predicate and the result is
inserted into the continuation.

6. The leftmost goal of the continuation is a jit_merge_point. In this case merging
is attempted, as described in section 6.4. When a successful merge is found, partial
evaluation stop. Otherwise it continues.

When the continuation is empty or the partial evaluation process is stopped by case 2., 3.
or 6., the residual code that was built so far is asserted using asserta.

7.1 Ensuring Termination

Since a classical partial evaluator is run in advance, it should always terminate, even
though the user program itself does not. There are various techniques for ensuring this
[LB02]. The situation is different for dynamic partial evaluation since it happens at run-
time. There it is enough to make sure that running the partial evaluator does not change
the termination behaviour of the program, i.e., the partial evaluator is only allowed to
not terminate, when the original program does not terminate either. For the rest of the
section let us assume that the original program terminates.

In this work, partial evaluation and execution of the residual code is interleaved. To
ensure termination it is therefore enough to make sure that the residual code is executed
from time to time, because eventually the residual code will terminate. To ensure that
the residual code is executed from time to time we need to prevent the partial evaluator
running for arbitrarily long periods. The partial evaluation process can be stopped at any
point without losing much performance by inserting a lazy stop into the continuation, as
described in Section 4.3.
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Of the cases above, only case 5. increases the size of the continuation, all other cases
reduce it. Therefore we can count the number of times the partial evaluator executes case
5. without running the residual code in the meantime. If that number grows bigger than
some number N , we can insert a lazy stop into the continuation to give the residual code
a chance to run. In this way, termination is ensured.

We can even reduce at will the overhead of ensuring termination by changing the value of
N . (Note however that although increasing the value of N reduces the runtime overhead,
there is no guarantee that any given value of N is large enough to keep the runtime
overhead below some threshold for all specialized programs. Indeed, in extreme cases,
more than N user calls can be unfolded by the specializer without any residual code
being generated, leading to several consecutive lazy stops.)

8 Benchmarks and Applications

To get some impression for the performance of our dynamic partial evaluation system,
we ran a number of benchmarks. We compared the results with those of ECCE [LMDS98],
an automatic online program specializer for pure Prolog. The experiments were run on
a machine with a 1.4 GHz Pentium M processor and 1GiB RAM, using Linux 2.6.24. For
running our prototype and the original and specialized programs we used SWI-Prolog
Version 5.6.47 (Multi-threaded, 32 bits). ECCE was used both in the “classic mode” which
uses normal partial evaluation and in “conjunctive mode” (which uses conjunctive par-
tial deduction with characteristic trees and homeomorphic embedding; see [DSGJ+99]).
Conjunctive partial evaluation is considerably more powerful, but also much more com-
plex.

Figure 16 presents five benchmarks. The first three are examples for a typical logic pro-
gramming interpreter with one and also with two levels of interpretation. The fourth
example is a higher-order example, using the meta-predicates =.. and call. Finally,
the fifth is a small interpreter for a dynamic language. Note that “spec” refers to the
specialization time and “run” to the runtime of the specialized code. For ECCE the spe-
cialization time was not measured.

Our prototype is in all cases faster than the original code, but also in all cases slower (by a
factor between 2 and 8) than ECCE in conjunctive mode. On the other hand, our prototype
is faster than ECCE in classical mode in two cases. These are not bad results, considering
the relative complexity and maturity of the two projects. While our prototype is rather
straightforward and was written from scratch over the course of some months and con-
sists of about 1500 lines of Prolog code, ECCE is a mature system that employs serious
theoretical results and consists of 25000 lines of Prolog code.

Some of the speed difference might also be explained by the different ways of using the
Prolog VM. Asserted code is typically slower than compiled code, and our chain of tail-
call-only generated predicates that mostly move data around does not look like typical
Prolog code, so the SWI-Prolog might not really optimized for that.

As we have also seen in Section 2.4 the third benchmark is one where ECCE in clas-
sical mode produces rather bad code. This can be seen in the benchmark results as
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well, there is nearly no speedup when compared to the original code. Our prototype
has the same problem, it also loses the information that all the goals in the goal list
are replaceleaves calls. However, in our case this is not a problem, since that in-
formation can be regained with a promotion, thus preventing code explosion and under-
specialization.

9 Related Work

Promotion is a concept that was already explored in other contexts. Psyco is a run-time
specializer for Python that uses promotion (called “unlift” in [Rig04]). Similarly, the PyPy
project [RP06, BR07], in which the author is also involved, contains a runtime specializa-
tion system built on promotion [RP07].

Greg Sullivan first introduced Dynamic Partial Evaluation [Sul01] and describes an im-
plementation for a small dynamic language based on lambda calculus.

One of the earliest works on runtime specialization is Tempo for C [CN96, CHN+96].
However, it is essentially an offline specializer “packaged as a library”; decisions about
what can be specialized and how are pre-determined.

Another work in this direction is DyC [GMP+00], another runtime specializer for C. Spe-
cialization decisions are also pre-determined, i.e. dynamic partial evaluation is not at-
tempted, but “polyvariant program-point specialization” gives a coarse-grained equiva-
lent of our promotion. Targeting the C language makes higher-level specialization diffi-
cult, though (e.g. malloc is not optimized).

On the conceptual level polymorphic inline caches (PIC) [HCU91] are very closely related
to promotion. They are used by JIT compilers of object-oriented language and also insert
a growable switch directly into the generated source code. This switch examines the
receiver types for a message for a particular call site. From that angle, promotion is an
extension of PICs, since promotions can be used to switch on arbitrary values, not just
receiver types.

The recent work on trace-based JITs [GPF06] (originating from Dynamo [BDB00]) shares
many characteristics of our work. Trace-based JITs also concentrate on generating good
code for loops, and generate code by observing the runtime behaviour of the user pro-
gram. They also only generate code for code paths that are actually followed by the
program at runtime. The generated code typically contains guards; in recent research
[GF06] on Java, these guards’ behaviour is extended to be similar to our promotion. This
has been used twice to implement a dynamic language (JavaScript), by Tamarin7 and in
[CBY+07].

At a higher level, our idea of keeping track of which parts of a term are useful for special-
ization, and generalising away the rest, can be traced back to the notion of characteristic
trees in [GB91]. This technique is also employed in the ECCE system which we have used
for performance comparisons.

7http://www.mozilla.org/projects/tamarin/
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10 Conclusion and Future Work

We described the concepts and the implementation of a dynamic partial evaluation sys-
tem for the Prolog language. The prototype we implemented uses the concept of promo-
tion to help address some of the problems that trouble classical partial evaluation, namely
code explosion, under-specialization, termination problems and support for large parts
(particularly extra-logical) of the Prolog language. Despite our prototype’s relative sim-
plicity it is quite full-featured, supporting a large range of builtins and giving competitive
performance. The builtin support is generally notable, since on the one hand it is very
simple to support builtins and on the other hand even builtins that are not explicitly
supported still work reasonably due to the generic builtin code.

Due to the use of promotion our partial evaluator works reasonably well for interpreters
of dynamic languages and generally in situations where information that the partial eval-
uator needs is only available at runtime. This is an advantage that a classical partial eval-
uator can never possess for fundamental reasons. We have not tried our prototype on
really large programs yet, so it remains to be seen whether it works well for these.

There are some downsides to our approach as well. In particular promotion needs a
Prolog system that supports assert well, since the whole approach depends on them in
a crucial manner. We have not yet evaluated our work on any Prolog system other than
SWI-Prolog (which supports assert rather well). In the future we would like to support
other Prolog platforms like Ciao Prolog or Sicstus Prolog as well.

Merging is another area that still needs further work. We plan to explore ways of insert-
ing the jit_merge_points automatically. Furthermore, the merging strategy needs
further evaluation and possible refinement, as over-specialization is not always pre-
vented.

Finally we need to take a look at the speed of the partial evaluator itself, which we so far
disregarded completely. Since partial evaluation happens at runtime it is necessary for
the partial evaluator to not have too bad performance.

On a conceptual level we plan to try to incorporate some of the ideas (particularly the
approach to merging) of this work into the partial evaluator of the PyPy project.
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Figure 16: Experimental Results
Experiment Inferences CPU Time Speedup

A vanilla meta-interpreter
[HG98, MD95] running append
with a list of 100000 elements.
The interpreter can be seen in
Figure 4.

Vanilla - Append
original 500008 0.35 s 1.0
JIT spec+run 281842 0.13 s 2.69
JIT run 200016 0.11 s 3.18
ecce classic 100003 0.03 s 11.67
ecce conjunctive 100003 0.03 s 11.67

The vanilla interpreter running
itself running append with a list
of 100000 elements.

Vanilla - Vanilla - Append
original 2000023 1.42 s 1.0
JIT spec+run 1577228 0.66 s 2.15
JIT run 700020 0.32 s 4.44
ecce classic 100003 0.04 s 35.5
ecce conjunctive 100003 0.04 s 35.5

The vanilla interpreter running
replaceleaves, see Figure 4.
Input was a full tree of depth 18.

Vanilla - Replace Leaves
original 2621438 2.76 s 1.0
JIT spec+run 2493636 1.77 s 1.56
JIT run 2097162 1.58 s 1.75
ecce classic 2097074 2.64 s 1.05
ecce conjunctive 589825 0.78 s 3.54

A higher order example: reduce
in Prolog using =.. and call.
This is summing a list of 100000
integers, knowing statically the
functor that is used for the sum-
mation.

Reduce - Add
original 1492586 16.73 s 1.0
JIT spec+run 5082861 3.53 s 4.74
JIT run 5000014 3.24 s 5.16
ecce classic 1134504 8.5 s 1.97
ecce conjunctive 2000001 1.85 s 9.04

An interpreter (∼100 lines of Pro-
log) for a small stack-based dy-
namic language. The bench-
mark is running an empty loop
of 100000 iterations.

Stack Interpreter
original 2100010 3.13 s 1.0
JIT spec+run 5699992 1.46 s 2.14
JIT run 200019 0.08 s 39.13
ecce classic 100003 0.05 s 62.6
ecce conjunctive 100003 0.04 s 78.25
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